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J. Phys. A: Math. Gen. 14 (1981) 3407-3409. Printed in Great Britain 

COMMENT 

On the Wu-Yang potentials for the Dirac monopole 

M Crampin 
Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 

Received 26 May 1981 

Abstract. The Kostant-Souriau theory of prequantisation is applied to the Dirac monopole, 
some points in a recent account of the Wu-Yang potentials in terms of the Hopf map S3 + S 2  
being thereby clarified. 

In a recent paper, Ryder (1980) has given an account of the Dirac monopole based on 
the Hopf map S 3  + S 2 .  His account, which is briefly repeated below, contains several 
points worth treating at greater length and from a somewhat different perspective. 

The magnetic field B of a magnetic monopole of strength g at the origin in R 3  
defines a two-form on R - {0} (since the field is singular at the origin), which is closed 
(since div B = 0) but not globally exact (since its integral over S 2 ,  the unit sphere centred 
at the origin, is 47rg and not zero). There is thus no globally defined vector potential for 
B. The two-form is completely determined by its restriction to S2, where it coincides 
with gu2, the two-form u2 being the area two-form on S 2 ,  likewise closed but not exact. 
However, there are local one-forms, defined on S 2  -{north pole} and S2 -{south pole} 
respectively, differing by an exact form on their common domain, whose exterior 
derivatives are both gu2;  these local one-forms determine the Wu-Yang vector 
potentials for B (Wu and Yang 1975). The Hopf map S 3  + S 2  defines S 3  as a non-trivial 
fibre bundle over S 2 ,  with fibre the circle S1. The pull-back of gu2 to S 3  by the Hopf 
map, denoted by B, is exact, as is every closed two-form on S 3 .  There are obvious local 
sections of S 3  over S2-{north pole} and S2-{south pole} by means of which the 
one-form A on S 3  such that B = dA may be pulled back to give local one-forms on S2;  
these are the local one-forms which determine the Wu-Yang potentials. The quan- 
tisation condition arises from the observation that -(ie/hc)A may be considered as a 
connection form, and -(ie/hc)B its curvature form, and applying the Gauss-Bonnet- 
Chern theorem. It is claimed that the condition obtained is eg = hc, the Schwinger 
condition, rather than the full Dirac condition eg = inhc for integral n. 

The final result appears to be at fault. To see why the full Dirac condition has the 
topological origin that it was the purpose of Ryder's paper to reveal, it is advantageous 
to consider the Dirac monopole in the light of the Kostant-Souriau theory of quan- 
tisation (Kostant 1970, Woodhouse 19801. 

The two-form on M = R 3  - {0} determined by the magnetic field B of the monopole 
will be denoted by us: in fact ws=p*(ga2), where p : R 3 - { 0 } + S 2  is the obvious 
projection from 0. The phase space for the motion of an electrically charged particle, of 
charge e, in the magnetic field of the monopole is the cotangent bundle T*(M) .  The 
two-form nrr = d e  + ( e / c ) 7 * u s  on T*(M),  where 8 is the canonical one-formp, dx' and 
T : T*(M)  + M is the projection, defines a symplectic structure on T*(M) .  The motion 
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of the charged particle is given by Hamilton's equations determined by this symplectic 
structure and the Hamiltonian H(x ,  p )  = tlp12. According to the Kostant-Souriau 
theory, quantisation, or strictly speaking prequantisation, of this symplectic structure 
requires a complex line bundle over T * ( M )  (whose sections are wavefunctions), a 
Hermitian fibre metric on the bundle, and a connection compatible with the Hermitian 
structure (in terms of which the operators corresponding to classical observables are 
defined) whose curvature, which is a pure imaginary valued two-form on T * ( M ) ,  
coincides with -(i/h)llB. The necessary and sufficient condition for the existence of such 
a Hermitian complex line bundle with connection is that Js l l B  over every oriented 
closed two-surface S in T*(M)  be an integer multiple of 2 r h .  One argument for this 
conclusion is very similar in form, though not in interpretation, to the argument in § 3 of 
Ryder's paper, in which Stokes' theorem is applied to the equator of S2, the northern 
and southern hemispheres lying in the domains of different Wu-Yang potentials. In the 
case in hand, the line integral (along a closed curve in the two-surface S )  gives the phase 
change produced by parallel translation around the closed curve; on the application of 
Stokes' theorem it is the curvature two-form which must be integrated over the two 
parts into which S is divided by the curve (see Woodhouse (1980), ch 5 for the details). 
Now RB = d6' + (e/c)T*wB, and 5, d6' = 0 for any closed oriented two-surface S.  Thus ss ll, = (e/c) js T*wB.  In effect, the only situation which does not automatically lead to a 
value of zero for this integral occurs when the surface S projects on a surface in R 3  - { O }  
surrounding the origin, which may be smoothly deformed onto S 2 ,  and then Is T * W B  = 
Js2 g a z e  The quantisation condition is thus that ( eg lc )  ss2 a2 be ap integral multiple of 
2 r h ,  i.e. that eg = i nhc ,  the Dirac condition. 

The Dirac condition thus has a topological or geometrical origin: it is the necessary 
and sufficient condition for the existence of a prequantum complex line bundle with the 
appropriate properties; it may be expressed by saying that (1/2rh)nB must define an 
integral class in the de Rham cohomology group H2( T*(M) ,  R ) .  

It happens that for each integer n there is, up to equivalence, exactly one prequan- 
tum complex line bundle whose curvature is -(i/h)llB, where the strength of B is 
i nhc le .  A representative bundle may be constructed by taking advantage of the Hopf 
map as follows. The bundle is constructed as the pull-back of a bundle over S 2  by the 
map P O T :  T * ( M )  + S2. The group SU(2) acts transitively by bilinear transformations on 
S2, the isotropy group of the south pole being U(1); thus SU(2) is a principal fibre 
bundle over S 2  with fibre U(1). The underlying manifold of SU(2) is just S 3 ,  and the 
projection SU(2) + S2 giving the principal bundle structure is the Hopf map. There is a 
unique connection in this principal bundle which is invariant under the action of SU(2); 
its connection form is, up to a constant factor, the one-form A on S 3  given by Ryder. 
Given any unitary representation of U(1) on C, that is to say, any character of U(1), one 
may form a complex line bundle over S2 by using the associated bundle construction 
beginning with the principal bundle SU(2) + S2 and using that representation (Kobay- 
ashi and Nomizu 1963). Such a complex line bundle will have a Hermitian structure, 
since a unitary representation is used to construct it, and will inherit a connection from 
the connection on the principal bundle. The characters of U(1) are given by the 
integers, the nth character being 

The standard sections of SU(2) over S 2  -{north pole} and S 2  -{south pole} determine 
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local sections of the associated complex line bundles, the local sections fi2 of the 
complex line bundle determined by the nth character being related on their common 
domain by 

$ 2 ( @ , 4 )  = e 1 n 4 w 4  4 ) .  
It may be shown by direct computation that the curvature of the connection in this 
bundle is -iina2. If a1 and a2 are the connection one-forms for this connection based 
on 41 and b2 respectively, then ( ihc/e)p*al=AI and ( ihc/e)p*a2=A2 are real 
one-forms on R 3  -{non-negative z axis} and R 3  -{non-positive z axis} respectively 
whose exterior derivatives are both w e ;  the corresponding vector fields (defined by the 
standard metric on R 3 )  are the Wu-Yang vector potentials. The prequantum complex 
line bundle on T*(M)  is obtained by pulling back the S 2  bundle, and the required 
connection has connection forms -(i/h)[@ + (e/c).r*A1] and -(i/h)[@ + (e/c)7*A2]. 

It may be of interest that sections of the complex line bundle over S 2  associated with 
SU(2)+S2 by the nth character of U(1) are ‘functions of spin-weight n’ in the 
terminology of Newman and Penrose (1966), and that the connections in these bundles 
are very closely related to the operators a and 8 introduced by them. 
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